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SP3’s activities: summary

SP3 undertakes research into
low temperature plasmas and their applications.
Plasma thrusters for nano-sats
PIC simulations and plasma modeling,
plasma processing of surfaces,
atmospheric pressure plasmas for medicine
space physics and thermodynamics

INDUSTRY

EADS-ASTRIUM electric propulsion
Lockheed/Martin electric propulsion
LAM RESEARCH microelectronics
OREGON PHYSICS focused ion beams from Ar, Xe plasma source not liquid metals
SLInnovation, turnkey Ion Routers
Airity/CCS DC/DC conversion and rf generation



Interaction of electron beams with plasmas

If a charged particle
passes through a
medium with a velocity
greater than the phase
velocity, then waves
are emitted
(Heavyside, Cerenkov)




Boats moving faster than surface
water waves create a similar wake
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Electron beams interact with plasmas in a similar manner,
the 1nstability 1s convective rather than absolute 1n that it
grows along the direction of the beam velocity rather than
growing everywhere in time. (from Briggs)
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Figure 2.1. Evolution of pulse disturbance in an unstable system,



An unmagnetized plasma supports three natural
modes of oscillation (waves)
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How does a 3-wave parametric instability grow in a

plasma?
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Laser light propagates through
the plasma

Oscillations in the plasma
begin to radiate scattered light

The beating of the two light
waves creates a ponderomotive
force pushing the particles into
the troughs of the envelope

If the bunching of the particles
matches an electrostatic mode,
the 3 waves become resonant
and grow pal



3 wave parametric decay
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These can be considered as a Feynman diagram with one input
wave, a scattering matrix, and two output waves.



The energy and momentum of the decay waves must
equal those of the input wave:
Wy = O; T 0,
ky =k, +k,
since Energy = hv and momentum P = hk

arranging: M) - Oy = O

ko -k, =k
the frequencies ®, and w, are beating and a non-linear
interaction element will produce ;.

or dividing (g - ®,)/(k, - k, )= 05/k;
1.e. the group velocity of the high frequency waves must
equal the phase velocity of the low frequency wave






For unmagnetised plasmas (or for o, << ®.,) the
interaction occurs near the plasma frequency.
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Electron beams support fast and slow waves, propagating
with and against the beam direction, these waves interact
with the electron plasma (Langmuir) waves to produce
instabilities.

electron
plasma wave



In a magnetised plasma the beam interacts with oblique
waves on the upper hybrid and whistler resonance cones
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Figure 1.1: The dispersion relation of Simpson and Dunn (1966) for a beam-plasma inter-
action in cylindrical geometry. The circles show the regions where the fast and slow beam

waves may couple with the Trivelpiece-Gould modes of the plasma.



Rocket experiments launched electron beams along a field line to the
earth’s congugate point, beam plasma discharge postulated to explain
rocket neutralisation (and Hall Effect neutraliser used!)

30m

Collector

Suppressor--

Eu:\iold i/

. Phoiometer

I
|
0 D ( t!v i F
. Tv; Lungmunr Probes . 1

— a—
- e

Fig. 1. Schematic representation of the experi-
mental arrangement.
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WOMBAT (Waves On Magnetised Beams And Turbulence) was
constructed at the ANU to simulate the Space Shuttle environment
and active experiments with charged particle beams.
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Figure 2.1: Schematic diagram of the WOMBAT apparatus.



Four types of BPD were discovered in WOMBAT (f,, = 100MHz)
BPD1 when (wp, < o)

BPD2 when (20, > 0, > ©,)

BPD3 and BPD4 (o, >> Oce)
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Figure 2.8: Typical spectra of the first four BPD’s, when & = 300 eV and By = 36 G.
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As the beam current was increased, the frequency of the BPD1
bursts increased and the deduced plasma density increased linearly
with beam current (1€. 10nisation rate).
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Figure 2.11: a) Frequency of the BPD1 bursts with increasing Iy. b) Plasma density

whstiggated by assuming that the oscillations are at fe.



The bursts grew axially away from the electron gun at a rate
approximately ~ (Nye,n/Njasma) @, They were axially modulated by
the finite number of wavelengths that could fit in the system (Pierce)
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Figure 2.13: Envelopes of the 30-40 MHz bursts measured with 16 probes spaced 6 cm apart

along the azis of the electron beam.
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05|

1 0o

0.5}

10

00

Length / Jﬁn

Figure 4.1: The dispersion relation for the original Pierce instability. The solid lines are
the real part of 4, te. the growth rate, and the broken lines are the imaginary part of v,

ie. the frequency.
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Figure 2.10: Correlation between a) envelope of the RF burst, b) current to a photomul-

tiplier tube, and c) current reaching the collector of the energy analyser with V3 = —15

volts, for BPD1 bursts.



For large amplitude bursts, the beam produced waves with sufficient
amplitude reverse the motion of the electrons, ie. the beam was
stopped by 1t’s own 1nstability!
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Figure 2.14: Envelopes of the bursts of about 50 MHz measured with 16 probes spaced 6

cm apart along the azis of the electron beam.
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Fig. 2. Electron encrgy distributions obtained from the dif-
ferentiated timc averaged energy analyzer results, {a) just
before BPD, Iy ~ 3 mA; (b) just after BPD, i, ~ 6 mA; (c)
developed BPD, I, ~ 12 mA. As the potential on the analyser
affects the plasima, the beam currents are accurate only to a
factor of two.

The electron beam 1s severely
perturbed by the instability,
scattering and phase mixing down
to lower energies. The additional
Beam Plasma Discharge produced
an excess of low energy electrons
which increase the 1onisation rate.
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Waves generated by the beam can become sufficiently high to

parametrically decay into lower frequency waves.
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In this experiment, the beam convectively excites waves at the upper
hybrid frequency (A) which then decay to a non propagating wave at
the electron cyclotron frequency and a whistler on the resonance cone
(B) and finally to broad band waves by cascading (C). The spatial
evolution of the pump, sideband and daughter are shown 1n (D).
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Figure 2, Wave spectra in the beam at 35 cm (a), 50 cm (b), and 75 em () and (d) amplitude as a
function of distance from the gun for waves at 1.3, 1.01 and 0.3 Og
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Figure 8. The base group of lines shown in high resolution. Spectra at high pressure (red, p=0.78 Radlal pOSlﬂOﬂ (Cm)

mTorr) and low pressure (black, p=0.42 mTorr) are superimposed to illustrate the line shifts.
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FIG. 1, Decay spectrum near the transmitting anten-
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FIG. 2. Low-frequency spectrum as a function of an-

gle to B, for 30 W input power. The eight grey shades
represent an amplitude range of 20 dB.
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simple helicon dispersion A ~ 5 x 10°(B/tn)!2

Assuming that n~ 103 cm™ and B ~ 700 Gauss, conditions typical
near the helicon source:

For the 25 MHz pump A~85cm k~0.74
For the 20 MHz daughter A~95cm. k~0.66
For the 5 MHz 1dler A~19cm  k~0.33
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